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ABSTRACT: An experimental and modeling study was carried out to understand the
relationship between the viscosity of a multimodal latex and its particle-size distribu-
tion (PSD) and polymer concentration. This study illustrates the inadequacy of existing
models in predicting the viscosity of complex latices. It is shown that the latex viscosity
at a fixed shear rate is very sensitive to the polymer concentration at high solids content
and to the PSD. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1878–1896, 2002; DOI
10.1002/app.10511
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INTRODUCTION

Recent studies of high solids content latices (e.g.,
refs. 1 and 2) have shown that it is possible to
obtain polymer volume fractions of well over 65%,
and occasionally over 70%, by correctly manipu-
lating the particle-size distribution (PSD) of the
final product. One can achieve these levels of sol-
ids content essentially by creating bimodal or tri-
modal latices, where 60–80% of the polymer
phase is composed of large particles (�500–600
nm), and the remaining particles are between
four and eight times smaller. Chu et al.3 showed
that the viscosity of this type of concentrated,
multimodal dispersion can be very sensitive to
the PSD and solid content. In what follows, we
will present an experimental study of the rheo-
logical characteristics of high solids content lati-
ces, along with a preliminary attempt at quanti-
fying the impact of PSD and solids content on the
latex viscosity.

As a large number of latex products are used in
the form of films, high viscosities are undesirable
from an applications point of view because they
lead to long film drying times and make the ap-
plication of the latex on a surface problematic. In
addition, high viscosity can lead to a drastic re-
duction in the quality of the mixing in the semi-
batch stirred tank reactors typically used in latex
preparation, and transfer of the latex from the
reactor to other parts of the plant can be difficult
when the viscosity of the fluid increases above a
certain limit (see, e.g., ref. 4) For these reasons, it
is important to control the PSD of a multimodal
latex and to understand the relationship between
the PSD, the solids content, and the viscosity.

Emulsion polymer latices will exhibit vis-
coelastic rheological characteristics when the
forces between the particles are relatively strong,
as is the case with high solids content latices (i.e.,
with polymer volume fractions � 55–60%). Try-
ing to quantify the rheological behavior of a col-
loidal dispersion essentially boils down to trying
to determine the influence of the size, nature, and
concentration of the particles.5–8 Adding particles
to a homogeneous fluid forces us to consider as-
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pects linked to (i) the Brownian movement of the
particles; (ii) the hydrodynamic flow field around
the particles; and (iii) the interactions between
the particles in the fluid.

Theoretical Treatments

One of the first attempts to describe the influence
of the presence of particles in a dispersion was the
well-known Einstein equation:

�r � 1 � 2.5� (1)

This expression linked the relative viscosity of the
dispersion (�r, viscosity of the dispersion relative
to the viscosity of the solvent) to the volume frac-
tion of spherical particles in suspension (�). This
expression is only valid for highly dilute suspen-
sions (� � 0.01) and is valid only if the following
conditions are satisfied:

1. The particles remain far enough apart that
they do not interact and that the flow field
created around a given particle does not
impinge upon that of the neighboring par-
ticles.

2. The suspended particles are considered to
be rigid, uniform spheres.

3. The no-slip boundary condition applies at
the surface of the particles.

4. The dispersion is in a Stokes flow regime.
5. The solvent is an incompressible Newto-

nian liquid, and the molecules of the sol-
vent are very small with respect to the
radius of the particles.

6. The influence of exterior forces (e.g., grav-
ity) is negligible.

Although the last two hypotheses might be ac-
ceptable from the point of view of modeling latex
viscosity, the first four are not, and the fact that
we are not interested in extremely dilute disper-

sions means that eq. 1 is not useful for high solids
content systems. In the case of concentrated dis-
persions, the close proximity of the particles
means that there will be a physical interaction
between neighboring particles and that the flow
field around a given particle can modify (or inter-
act with) that around its neighbors. A number of
authors (e.g., refs. 9–12) have tried to adapt the
approach used in developing eq. 1 by proposing
empirical equations of the form �r � f(�) to ac-
count for the effects of increased concentration.
Four of these are summarized in Table I.

Perhaps the best known of the equations used
to describe the effect of particle concentration on
the relative viscosity in Table I is the Mooney
equation. It is based on purely geometric consid-
erations. It accounts for the increase in viscosity
due to the addition of new particles by considering
the viscosity of the original dispersion as that of
the solvent. Note though that this approach is
still based on the assumption that the particles in
the dispersion are of a uniform size. Although this
equation functions correctly for a number of ap-
plications, it is not particularly well-adapted to
the problem at hand for a number of reasons,
including the fact that in a typical polymer latex,
particle–particle interactions are influenced by
the electrostatic nature of the particle stabilizers
(electroviscous effects), as well as the fact that we
are interested in latices composed of particles of
different sizes.

Three different electroviscous phenomena can
be caused by the electrostatic stabilization sys-
tems commonly used in emulsion polymerization,
and the consequent electric double layer that sur-
rounds the particles, and can contribute to an
increase in the viscosity of a emulsion. The first of
these phenomena is the distortion of the double
layer when the particle is subjected to a hydrody-
namic constraint. This can provoke an asymme-
try in the electric field around the particles, but is
in general, a relatively weak contribution. The

Table I Relative Viscosity of a Dispersion as a Function of the Particle
Volume Fraction

Vand (1945)9 �r � 1 � 2.5� � k2�2 (k2 between 2.5 and 9)

Mooney (1951)10 �r � exp� 2.5�

1 � �/�max
�

Krieger & Dougherty (1972)11 �r � (1 � �/�max)�[�]�max

Quemada (1978)12 �r � �1 �
���

2 ���2
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second contribution is linked to interparticulate
colloidal interactions and can be thought of by
considering an effective particle radius. The
weaker the ionic force in the latex, the thicker the
electric double layer around the particles will be.
The volume effectively occupied by a given parti-
cle will therefore be a function of the ionic
strength of the latex. This effect can be quite
significant at high concentrations, where the vis-
cosity is a very strong function of the volume
fraction of polymer. The third electroviscous ef-
fect is important when the milieu contains poly-
electrolytes absorbed onto the surface of the par-
ticles. These chains can unfold and become
charged under different conditions (pH, electric
properties of the continuous phase, etc.). This un-
folding of the chains on the surface of the particles
can modify the interaction between the particles
and between the particles and the continuous
phase.

The models listed in Table I, as well as the
Einstein equation, do not account for particle–
particle, or particle–fluid interactions, and there-
fore implicitly assume that electroviscous effects
are not important. This simplification is equiva-
lent to saying that the viscosity of a dispersion is
independent of the size of the dispersed particles,
which, as we will see below, is not the case as we
are concerned with colloidal particles with elec-
tric surface charges.

In so far as the influence of particle size is
concerned, experience has shown that, in prac-
tice, a latex of small particles is more viscous than
a latex of larger particles, all other things being
equal. The reason for this is that for a given
concentration, the smaller the particles are, the
more numerous they are and the more the effect
of interparticle interactions is important because
the distance between particles is reduced. Also,
the thickness of the electric double layer, ��1, can
be calculated as follows13:

1/� � � �kBT
8�e2NAI (2)

where 	 is the dielectric constant of water (contin-
uous medium), kB is the Boltzman constant, T is
the absolute temperature, I is the ionic strength,
e is the charge of a single electron, and NA is
Avagadro’s number. The thickness of the layer is
independent of the particle size and will therefore
have a relatively larger impact when the particles
are small.

If we reconsider the equations presented in
Table I, we can see that the expressions proposed
by Mooney and by Krieger and Dougherty contain
a term �max, which represents the maximum vol-
ume fraction of spheres in the dispersions. Once
the effective volume fraction is equal to �max, the
viscosity of the latex will tend toward infinity. In
a slightly different vein, Bicerano et al.14 claim
that �max can be used as an approximation for
what they call the viscosity percolation threshold
(�*) because they prefer to use the percolation
theory to understand the influence of particle
size, shape, and concentration on the viscosity of
a dispersion of particles. �* is said to be the
volume fraction of particles at which the particles
in the dispersion are stuck in place. They argue
that viscosity should be modeled with respect to
the reduced volume fraction of particles (i.e., the
term �/�max that appears in some of the equations
in Table I) rather than just �. Ideally, it would be
interesting to be able to attach a real physical
significance to this term to help understand the
limits of solid content beyond which we cannot
hope to go if we wish to avoid problems with high
viscosity. From the point of view of the viscosity of
a dispersion of particles, and in particular of a
multimodal latex, it is intuitively obvious that the
combination of particle sizes that provides the
highest value of �max will also lead to the lowest
viscosity for a fixed value of �. For this reason, it
is interesting for us to identify a value of �max for
our multimodal latices and to find a means of
quantifying the relationship between the PSD,
polymer concentration, and �max.

For the case of uniform spheres in an infinitely
large container, the value of �max would be 0.74,
which corresponds to the case of compact, cubic-
centered packing of particles. However, if �eff �
0.74, then the latex would have an infinite viscos-
ity. On the other hand, a sphere with the same
diameter as one edge of a cubic container would
occupy a volume fraction of � � 0.52. Clearly, it is
unlikely that the particles in a polymeric disper-
sion would arrange themselves in either of these
fashions, and we can expect the value of �max to
be somewhere between these limits for a mono-
modal latex (note that this is not true for a mul-
timodal latex because small particles can insert
themselves in the spaces between the larger ones,
thereby increasing �max above the limit of 0.74).

By convention, it is accepted that a random
packing of uniform spheres will lead to a volume
fraction of 0.64. However, Greenwood et al.15

pointed out that this value is in fact an average
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value. Some random packings will lead to higher
values of �, others to lower values. For example,
values of up to 0.68 were observed in certain cases
of random packing.16 In fact, Torquato proposed
(see ref. 16) that rather than treating the problem
as trying to identify the maximum volume frac-
tion of a randomly packed set of spheres, it is
more useful to consider the problem in terms of
frozen packings (i.e., configurations or arrange-
ments of spheres that cannot be moved by an
external force). Torquato believes that this type of
packing exists and can even correspond to rela-
tively low volume fractions of spheres. We will
return to this point below.

Further difficulties arise from the fact that la-
tices in general, and the bimodal high solids con-
tent latices that interest us here, are not charac-
terized by a monodisperse PSD, but rather con-

tain a number of particles of different sizes. As we
mentioned above, the underlying idea behind cre-
ating bi- or trimodal latices is to insert small
particles into the spaces between the bigger ones,
in other words, to increase the value of �max. The
upper limit of �max will depend to a large extent
on the average particle sizes in the medium, as
well as on the relative concentration of each pop-
ulation in the latex. This is illustrated schemati-
cally in Figure 1 in two dimensions (the reasoning
will be the same in three dimensions). If we com-
pare the situations in Figure 1(a–c), it is clear
that there will be an optimum ratio of the diam-
eter of large particles to small particles that al-
lows us to obtain the highest possible value of
�max. In Figure 1(a), the small particles are too
large to fit between the larger ones, and in Figure
1(c), they are too small and do not entirely fill up

Figure 1 Schema of relationship between particle size, concentration, and solids
content (�max) in two dimensions. Choosing the correct ratio of diameters allows us to
minimize the space lost between the particles in Figure 1(b). In (a), the small particles
are too large to fit in the interstices between the large particles, and in (c), they are too
small. In addition, even if the diameter ratio is correct, there are too many small
particles in (d) to obtain the maximum value of �max. Note that the reasoning is the
same in three dimensions, only the diameter ratio will change.
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the interstices between the large particles. In ad-
dition, we can also compare Figure 1(b) and 1(d).
In Figure 1(b), the small particles are just large
enough, and there are just enough of them to fill
up the interstices, but still allow the larger par-
ticles to occupy a maximum space. In Figure 1(d),
we have the same particle size ratio as in Figure
1(b), but there are more small particles. This has
the same effect as in Figure 1(a), where the small
particles once again stop the larger ones from
occupying the most space possible.

It should be clear from this discussion that the
direct calculation of the value of �max for a mul-
timodal latex can be quite difficult. Given that it
took almost four centuries to prove Kepler’s orig-
inal hypothesis that �max � 0.74 for uniform
spheres (posed in 1609),17 it is reasonable to say
that it is beyond the scope of the current article to
attempt an a priori mathematical calculation of
�max for bimodal and trimodal latices. For this
reason, it is preferable to test different packings,
either experimentally or by simulation, to quan-
tify the relationship between the PSD, concentra-
tion of different particle populations, and �max
(e.g., as done by Sudduth18,19). This implies that
we will only be able to consider randomly packed
configurations, and, given the discussion in ref. 16,
means that it will be impossible to find an abso-
lute value for �max for a given latex. We will come
back to this notion of identifying the maximum
volume fraction, and its implications in terms of
the latex viscosity below.

Other attempts were made to model the influ-
ence of the PSD of a multimodal latex on its
viscosity. For example, Farris20 developed an ap-
proach to predict the reduced viscosity of a mul-
timodal mixture. This model was developed and
tested for mixtures of monomodal distributions of
spheres, and, in theory, can be adapted to any
number of subpopulations of the PSD provided
that each one is monodisperse. We will briefly
present this model here for the case of a trimodal
latex containing small (S), medium (M), and large
(L) particles. A volume fraction is associated with
each population (�S, �M, �L) in increasing order of
size. �S is the volume fraction of small particles
with respect to the volume of the small particles
plus the continuous medium, �M is the volume of
medium-sized particles divided by the volume of
medium and small particles plus the continuous
medium, and so on:

�S �
VPolym

P

VWater � VPolym
P (3)

�M �
Vpolym

M

VWater � Vpolym
P � Vpolym

M (4)

�L �
Vpolym

L

VWater � Vpolym
P � Vpolym

M � Vpolym
L (5)

Further, Farris also introduced a function H(�j),
which is the relative viscosity of phase j as a
function of the volume fraction of said phase. The
relative viscosity of a trimodal latex will then be
given by:


r � H��S	 � H��M	 � H��L	 (6)

Farris20 applied this model to a system of latices
with particles � 1 
m and used experimentally
defined values of the function H(�). Of course, one
could either define other experimentally obtained
functions or use the Mooney equation to define
H(�). By varying the form of these functions, Far-
ris showed that once the ratio of diameters of two
neighboring populations (e.g., S with respect to
M) is greater than 10, interactions between the
two populations are negligible. Under conditions
where particle–particle interactions are reduced
to a minimum, Farris20 showed that one obtained
a minimum viscosity for a ratio of 28% small
particles and 72% large particles by volume for a
bimodal latex, and a ratio of 12% small, 28%
medium, and 60% large particles for a trimodal
latex. This approach is interesting because it al-
lows us to explicitly account for the contribution
of different populations to the overall viscosity.
Its one major weakness is that it does not take
into account particle–particle interactions, and
especially, electroviscous interactions.

Experimental Approach

Experimental investigations of the effect of the
PSD on latex viscosity are far more numerous
than the theoretical treatments.3,6,7,15,18,19,21–25

For instance, Chu et al.3 carried out an experi-
mental study on trimodal latices, which were pre-
pared by mixing together three of four different
monomodal terpolymer emulsions (styrene–butyl
acrylate–methacrylic acid in the mass ratio of
66 : 33 : 1) with particle diameters of dp � 75,
135, 340, and 477 nm. The different samples were
concentrated by evaporation and the viscosities
were measured at constant shear rates. Note that
their polymers had a glass transition tempera-
ture (Tg) well above ambient temperature, and as
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a result, the particles are not deformable, and the
concentration step was relatively uncomplicated.
They found that, in general, mixtures that con-
tained particle weight fractions of approximately
80% large particles presented the lowest viscosi-
ties. In fact, they were able to create trimodal
blends with a polymer content of 71.7% (mass)
with a viscosity of 1077 MPa s at a shear rate of
10 s�1 with the following proportions (mass): 80%
of large (474 nm) particles, 10% medium (135 nm)
particles, and 10% small (75 nm) particles.

Greenwood et al. used poly(methyl methacry-
late) (PMMA)15 and polystyrene (PS)21 latices to
study the rheology of bimodal PSDs in terms of
the ratio of the diameters of large-to-small parti-
cles and the relative fraction of each population.
Their experiments showed the viscosity to be at
minimum when the small particles represented a
volume fraction of 15–25% of the particle phase
and when the ratio of large-to-small particles was
7.83.

Kemmere et al.22 also studied the rheology of
bimodal latices containing particles of 38 and 108
nm and found that the minimum viscosity was
obtained at a volume fraction of 30% small parti-
cles. The ratio of large to small particle diameters
in this study was less than 3, which might explain
the higher optimal concentration of small parti-
cles than in the work of Chu et al.3 and Green-
wood et al.15,21

Objectives

To set clear objectives for producing a high solids
content latex with a minimum viscosity, it is nec-
essary to understand the relationship between
the shape of a multimodal emulsion PSD, particle
concentration, and the viscosity. From the discus-
sions presented above, we can conclude that for
bi- and trimodal latices, if we can calculate a
value of �max as a function of the size and quan-
tity of the different populations in the latex, then
we should be able to identify the optimum condi-
tions (i.e., lowest viscosity for highest solids con-
tent). Therefore, in what follows, we will present
an experimental study of the viscosity of bimodal
and trimodal acrylic latices, as well as a numeri-
cal method that can be used to identify �max for
different conditions.

EXPERIMENTAL STUDY OF LATEX
VISCOSITY

In this section, we will present an experimental
examination of the viscosity of different latex

blends to determine the optimal PSD in terms of
minimizing the viscosity. An attempt to model the
data thus obtained with different models pre-
sented above is then presented.

Experimental

Latex Preparation

The composition of all of the latices used in this
study was (by weight) 78% butyl acrylate (BA),
19.5% MMA, and 2.5% acrylic acid (AA). All ma-
terials were obtained from ACROS (France) and
used as received. The latices were prepared in
unseeded, semibatch reactions in a jacketed glass
vessel. The recipes for the small, medium, and
large particles are presented in Table II. The de-
tails of the recipes, and the reasons for choosing
their compositions, are discussed by Schneider26

and will be presented in Part II of this series.27

The characteristics of the final latices are pre-
sented in Table III. The average particle sizes of
the unmixed latices were measured by using a
Malvern Lo-C quasi-elastic light scattering de-
vice. The anionic surfactant used in this study
was Disponil® FES 32 IS (sodium salt of the sul-
fate of a polyglycol ether), and the nonionic sur-
factant was Disponil® A 3065 (mixture of linear
ethoxylated fatty acids). Both surfactants were
kindly supplied by Cognis (France) and used as
received.

Preparation of Latex Blends

Different blends of the raw latices presented in
Table III were prepared and concentrated as
much as possible in a rotary evaporator under
vacuum at ambient temperature. The evapora-
tion step must be performed carefully and rela-
tively slowly to prevent the formation of coagu-
lum that can perturb the results of the rheological
characterization. It was not possible to heat the
mixture during evaporation because of the low Tg
(
 �30°C) of the polymer. Samples from a given
blend were progressively diluted with deionized
water to be able to plot viscosity as a function of
the volume fraction of polymer in the emulsion.
Solids contents of the concentrated and diluted
latices were measured by gravimetry. The compo-
sition in terms of proportions of particles of dif-
ferent sizes is presented in Table IV.

Viscosity Measurements

Viscosity measurements were performed on a
Couette-type viscometer (SUCK model V10) at a
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constant temperature of 22°C. The apparent vis-
cosity of different samples from the same batch of
latex blend was measured at shear rates from 0 to
100 s�1. Note that we have chosen to present the
results of the viscosity measurements of the dif-
ference at a shear rate of 20 s�1. Although it
might be more representative to present the re-
sults at very low shear,

�0 � lim
�̇30

�app (7)

rather than at 20 s�1 because the zero shear limit
would give us the relationship between � and the

percolation limit. However, our samples often
show a yield stress at low shear rates, which
makes the extrapolation to accurate values of �app
at zero shear rather inaccurate. In addition, the
viscosity at 20 s�1 is a quantity typically used in
industrial situations to characterize the applica-
bility of this type of latex.28

RESULTS AND DISCUSSION

The reproducibility of the viscosity measure-
ments was tested for different samples, and typ-

Table II Recipes for Preparation of Small, Medium, and Large Particles

Small Particles Medium Particles Large Particles

Initial Charge

Temperature 80°C 70°C 70°C
Duration 10 min 18 min 48 min
H2O 1282.4 872.7 868.8
TAanionic 18.9 0.01 0.01
TAnonionic 39.5 5 3.5
BA 70.9 80 80
MMA 17.7 20 20
Buffer 0.64a 1.9b

APS 2.64 0.9 1.8

Semibatch Feed

Duration 66 min 404 min 436 min 308 min
H2O 302.5 271.8 129
TAanionic 19.9c

TAnonionic 41.6c 29.8 15.8 7.14
BA 407 896 924 � 6.1d 339.3
MMA 102 227 231 � 1.5d 95.7
AA 13 30 34 � 0.2d

APS 2.6 2
BPO 1.5d

a Na2S2O5.
b NaHCO3.
c Added after completion as poststabilizers.
d Added as shot just before end.

Table III Characteristics of the Final Latexes Used in Viscosity Study

Large Particles Medium Particles Small Particles

Solids content (vol) 60.3% 49.7% 34.8%
Polymer Content (vol) 59.2% 48.7% 29.0%
Np (particles/liter emulsion) 4.68 � 1015 2.25 � 1016 2.38 � 1018

dp 607 nm 340 nm 60 nm

dp
L/dp

S � 10 and dp
L/dp

M � 1.8.
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ical results are shown in Figure 2. This figure
shows that the measurements are reproducible
enough that we can draw conclusions from our
series of measurements.

The viscosity at a fixed shear rate of 20 s�1 is
plotted as a function of the total solids content for
the series of blends defined in Table IV and shown
in Figure 3. All of the curves show a slow mono-
tonic increase of viscosity with solids content un-
til some critical point where huge viscosity in-
creases are observed for small increments of solid
content. Intuitively, the point where the viscosity
starts to increase to infinity is probably directly
correlated (and close to) the �max of the particular
blend.

It can be seen from Figure 3 that there is a
significant difference between the rheological be-
havior exhibited by trimodal distributions B5, B8,
B10, and that of the monomodal latex consisting
only of large particles (B4). In terms of maintain-
ing a low viscosity at high solids content, it is
clearly advantageous to use a correctly formu-
lated bi- or trimodal latex (recall that our objec-
tive is to identify the combination of particle sizes
that allow us to obtain the highest solids content

Table IV Blends Used in the Viscosity Study

Blend
Reference

Volume Fraction

Small Medium Large

B1 0.25 — 0.75
B2 0.35 — 0.65
B3 0.05 — 0.95
B4 — — 1.00
B5 0.10 0.10 0.80
B6 0.05 0.15 0.80
B7 0.05 0.05 0.90
B8 0.15 0.05 0.80
B9 0.15 0.10 0.75
B10 0.15 — 0.85

Figure 2 Reproducibility of the viscosity measurements.
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at the lowest possible viscosity). However, it
should be pointed out that producing bimodal la-
tices does not guarantee that the viscosity will be
lower for a given solids content. Comparing blend
B2 to blend B4 shows that a bimodal latex with
35% small particles by volume actually has a
lower viscosity than the monomodal latex, which
suggests that the proportions of each population
are very important. This is underlined by the fact
that latex B9 has a lower viscosity for a given
solids content than B1, and its maximum solids
content is higher than that of B1. Both of these
latices contain 75% large particles, but different
quantities of the two smaller populations. In fact,
replacing a part of the small particles in B1 with
medium-sized particles (B9) allows us to achieve
a higher solids content for the same viscosity.
From Figure 3, we can see that latices with
between 10 and 15% small particles, 0 and 10%
medium particles, and 75 and 85% large parti-

cles can be produced at higher solids content for
a given viscosity than the other blend ratios.
Although the latex that allows us to attain the
highest solids content at moderate viscosity is a
trimodal blend (B9), the difference between the
rheological behavior of this latex and that of the
bimodal B10 is minimal. This is more evident
from Figure 4, where we have plotted the vol-
ume fraction of each blend that corresponds to a
viscosity of 1000 MPa s at 20 s�1. The maximum
volume fraction is very close to the 80% large
particle–15% small particle mark and seems to
drop off quickly in all directions (although with
a bit of imagination, one could say that adding
a small quantity of medium-sized particles
might improve the solids content a very small
amount).

Because the results presented here are valid
only for the sizes presented in Table III, care
must be taken not to overgeneralize the conclu-

Figure 3 Viscosity of different latex blends as a function of polymer content at 20 s�1.
For PSD information, see Table IV. Note that the curves on the graphs are simply
interpolations to help differentiate between neighboring data sets. They have no phys-
ical significance.
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sions of this study to all multimodal systems (al-
though the proportions of 80–85% large particles
representing the lowest viscosity for a fixed solids
content is in agreement with the literature data
cited above).

Evaluation of Viscosity Models

It would obviously be useful to have a model that
allowed us to predict the viscosity of a multimodal
dispersion as a function of �, and the average
sizes of the different subpopulations, and, as we
discussed above, several are presented in the lit-
erature. In this section of the article, we will try to
model the data presented above with three of the
equations presented in Table I.

The Mooney Model

This model was developed for monomodal disper-
sions of hard, nondeformable spheres and does
not take the PSD directly into account. It does,
however, include the term �max, which, if we can
identify a value for the different latices, might
allow us to use the models in a predictive manner.
As we can see in Figure 5, the Mooney model can

be made to fit the data from different runs by
adjusting the value of the parameter �max. Two
problems arise, however. (1) The fitted values of
�max are very different from the values of �max (or
rather the limiting solids content), shown in Fig-
ure 3 for the different blends. The fitted values
range from 0.767 for the monomodal latex to 0.88
for one of the trimodal latices, whereas the limit-
ing solids content in Figure 3 range from approx-
imately 0.63 (not clear for B4) to 0.7. (2) We have
no means of predicting these values a priori, and
the value of 0.767 is much higher than what one
might logically expect for a monomodal system.
Of course, blend B4 is not perfectly monodisperse,
and as we will see in the next section, broadening
the PSD can help to lower the viscosity (or equiv-
alently, increase �max). However, it seems highly
unlikely that a packing factor of 0.767 has any
physical sense for a monomodal system, espe-
cially under dynamic conditions. Of course, the
Mooney equation was not developed for this type
of multimodal system with potential particle–par-
ticle interaction (via the presence of stabilizers),
so it is understandable that the model does not
function as a predictive model.

Figure 4 Three-dimensional plot of the volume fraction corresponding to a viscosity
of 1000 MPa s at 20 s�1. Maximum value corresponds to a blend close to B5, B8, or B10.
[Color figure can be viewed in the online issue, which is available at www.interscience.
wiley.com.]
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Figure 5 Apparent viscosity modeled using the Mooney equation. Note that to fit the data, extremely high (and
physically unrealistic) values of �max are needed. Viscosities are shown at a shear rate of 20 s�1.
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The Krieger–Dougherty Model

If we consider the Krieger–Dougherty model, we
can see immediately that such high values of �max
would lead to an underprediction of the viscosity
because of the form of the equation. Second, this
equation also includes the intrinsic viscosity of
the latex as a model parameter. The intrinsic
viscosity [�] is an important parameter in this
and some of the other models presented in Table
I and is defined as:

��� � lim
�30

�1
�

��r � 1	� (8)

In conditions where the simplifying hypotheses of
the Einstein model apply, [�] � 2.5. We at-
tempted to directly measure the viscosity of a
latex diluted to 0.2 vol % fraction on a low-shear
cone and plate viscometer (access was kindly pro-
vided by the Laboratoire de Physicochimie Mac-
romoléculaire at the ESPCI in Paris, France). Un-
fortunately, the error in the measurements (�5%)
was the same order of magnitude as the differ-
ence between the viscosity of the diluted latex and
water. A capillary viscometer would perhaps have
been better adapted to this measurement, but we
did not have access to such a device during the
course of this study. For that reason, we will
ultimately be led to treat [�] as an adjustable
parameter (because using an intrinsic viscosity of
2.5 in the Dougherty equations does not allow us
to fit the data). The results of a nonlinear least-
squares (Matlab® Optimisation Toolbox, leastsq
function) fit of the viscosity data (at 20 s�1) of the
Krieger–Dougherty model are presented in Table
V. The values of �max determined for this model

are obviously much more reasonable that the val-
ues presented for the Mooney equation, and, if we
compare with Figure 3, are directly correlated
with the point where the curve �(�) tends toward
infinity. It can also be noted that the intrinsic
viscosities are between 2.72 and 4.85, slightly
higher than the value of 2.5 in the Einstein equa-
tion. However, they are also quite reasonable, as
the value of 2.5 is for nondeformable, noninter-
acting spheres, and in the case of our latex, nei-
ther of these hypotheses (especially the second) is
true. In addition, given that the recipe contains
acrylic acid, monomer, and of course, surfactants,
it is highly probable that the continuous phase
contains water-soluble polymers which will also
influence the true value of [�]. It should also be
pointed out that these models are in fact zero-
shear models, whereas our measurements were
done at a nonzero shear rate.

The Farris Model

The Farris model is (in principle) the only one
presented in Table I that allows us to calculate
directly the contribution of each population in the
blend to the overall (apparent) viscosity of the
dispersion. However, because the polymodal lati-
ces with which we are concerned contain rela-
tively high volume fractions of large particles, the
prediction of the Farris model is dominated by the
value of H(�L) for the large population. In fact, a
series of calculations (not shown here for reasons
of brevity) reveals that, with the exception latex
B2 where the small particles are fairly numerous,
the results for the model predictions are entirely
independent of the volume fractions of small and
medium particles and depend only on the model
chosen for the large population. It was found that
if we use the Mooney equation for the H(�) in eq.
6, the values of �max for the large populations are
very close to those in Table V for the Krieger–
Dougherty model and more reasonable than the
values presented in Figure 5. Nevertheless, we
remain confronted with the problem of how to
estimate �max if we wish to use one of the existing
viscosity models. We will propose a method of
getting around this problem in the following sec-
tion.

SIMULATION OF THE RANDOM PACKING
OF SPHERES

Two important points should be clear from the
preceding sections.

Table V Optimized Parameters for the
Krieger–Dougherty Model

Blend �max [�]

1 0.713 4.850
2 0.586 3.625
3 0.687 3.917
4 0.658 4.256
5 0.704 3.873
6 0.658 2.983
7 0.645 2.718
8 0.731 3.780
9 0.704 3.889

10 0.727 4.188
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1. The viscosity of a multimodal latex is
highly sensitive to the PSD, and we do not
know the relationship between the PSD
(number of populations, average dp of each
population) and the viscosity.

2. Similarly, predictive models of the viscos-
ity require a priori knowledge of the pa-
rameter �max, which is very difficult to cal-
culate.

In this section, we will propose a method based
on the calculation of a the relationship between
the PSD and the maximum volume fraction occu-
pied by spheres that randomly fall into a con-
tainer. The idea is to develop an approach that
will allow us to directly simulate the relationship
between the PSD and the parameter �max, or at
least a value �lim that approaches �max and that
represents the highest volume fraction of solids
attainable by letting particles fall into a large
boxlike container. In theory, the PSD that gives
us the highest packing factor �max should also
give us the lowest viscosity possible at a given
volume fraction, and if we can approximate �max
by �lim, we should be able to identify the optimal
PSD in terms of viscosity. We will define these
two terms as follows. �max is the maximum vol-
ume fraction obtainable with optimal packing of
particles (e.g., 0.74 for uniform spheres and faced-
centered cubic packing, or 0.64 with random
packing). �lim is the maximum volume fraction
obtainable with the random packing (between
0.52 and 0.74) given the constraints imposed by
the simulation routine described below. Note that
both �lim and �max can take on different values in
the event that particles are randomly packed. As
we will see below, there are some subtle differ-
ences between �lim and �max, not least because
calculating �max implies that when particles are
being randomly packed, they can be displaced in
any direction. In the simulations presented be-
low, the particles are dropped into a box and will
continue to fall until they are supported either by
the bottom of the container (for the first layers) or
by at least three other particles. If the particles
fall and touch one or two other particles, they are
displaced horizontally a certain distance that al-
lows them to continue their trajectory until they
come to rest. This type of calculation can create
situations (for multimodal latices) where there
are void spaces in the packing that would be large
enough to accommodate certain particles, and
thus, the maximum packing factor �lim will be
less than (or at best equal to) �max. Nevertheless,

as we will show below, the results of this type of
simulation are coherent with experimental re-
sults (both those presented here and those re-
ported in the literature).

Calculation Algorithms

The algorithms presented in this section are de-
signed to calculate the volume fraction of solids
obtained by filling a boxlike container with
spheres that are randomly dropped into it. To
render the simulations tractable, we will impose
certain simplifications:

● All particles are rigid, noninteracting
spheres;

● We will not consider more than three popu-
lations;

● Each population is considered to be monodis-
perse.

All simulations were written and run in C��.
The space to be filled is shown schematically in

Figure 6. It is a cube of dimension Ndim, with each
cell being assigned a number between 0 and (Ndim
� 1). In the case of a multimodal latex, a cell is
assigned a dimension equal to the radius of the
smallest particle. In fact, �lim is calculated in this
cube, but the container is actually filled to a
height of 2Ndim to avoid problems linked to the
formation of a pile in the middle of the cube, with
void spaces near the wall. The simulation begins

Figure 6 Schema of format for simulation of random
packing and estimation of �lim for the case of a bimodal
latex.
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by dropping a particle into the cube. Both the
coordinates of the starting point of the drop and
the size of the particles (in the case of multimodal
latices) are chosen randomly. In the case of a
multimodal latex, the PSD is predefined in terms
of the size and relative proportions of two or three
populations. As an example, in the case of a bi-
modal latex, define f1 to be the number fraction of
small particles. The size of the particle to be
dropped is then chosen by generating a random
number between 0 and 1. If the number is be-
tween 0 and f1, the particle to be dropped is a
small one; otherwise, it is a large one. Similarly,
the x and y coordinates of the particle are also
chosen with a random number generator. How-
ever, to avoid biasing the results by the formation
of a perfectly uniform initial layer, particles are
initially assigned a final z-coordinate between 0
and 1, also through the generation of a random
number. This coordinate is used only if the parti-
cles in question do not come to rest on three other
particles, but rather fall to the bottom of the box.

Once a particle has been chosen and is
dropped, it will continue to fall toward the origi-
nal x-y coordinates until it encounters either an-
other object or the x-y plane. If it encounters an-
other sphere, it is displaced horizontally until it
comes to rest on the x-y plane or until it comes
into contact with at least three other points of
contact. Once the particle comes to rest, its coor-
dinates are fixed and it can no longer be moved;
however, it can be displaced while it is falling. To
simplify the calculations, we have imposed the
following limitations on the arrangement of the
particles in the cube:

1. The falling particle enters into contact with
one particle. As shown in Figure 7, in the case
where a falling particle (PF) enters into contact
with one particle (P1), it is displaced along the
axis formed by the straight line drawn through
the centers of both particles until its center is at a
distance (r1 � rF) from the fixed particle, where r1
and rF are the radii of P1 and PF, respectively. It
then either remains there if it is in the first layer
[the situation in schema Fig. 7(a)], or continues to
fall until it either encounters another particle or
its z-coordinate is equal to the z-coordinate that it
was randomly assigned to when released into the
box. This case applies if no other particle is de-
tected inside the sphere with its origin at the
center of P1 and a radius (r1 � rF); otherwise, we
go to scenario 2 below.

2. The falling particle can enter into contact
with two particles. In Figure 8, the schema is
adapted to a falling particle (PF) that can encoun-
ter two fixed particles. In this case, we have de-
tected only one existing particle that occupies
part of the space defined by the tangent sphere
around P1. The center of the falling particle is
then displaced on the tangent sphere in such a
way that its center remains on along the axis
defined by the x and y coordinates of the centers of
P1 and PF at the moment of contact. The particle
descends until its center arrives on the surface of
the tangent sphere with its origin at the center of
P2 and with a radius (r2 � rF). After this point,
the center of PF is displaced along the curve de-
fined by the intersection of the two tangent
spheres until the z-coordinate of its center is less
than that of the z-coordinate of either P1 or P2

Figure 7 Displacement of a falling sphere to account
for the presence of a single potential contact. Note that
original particle (light shading) is at a random height of
less than one particle radius above the surface of the
box, as described above.

Figure 8 Displacement of a falling sphere (PF in
black) that contacts two fixed spheres (first P1, then
P2).
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(whichever occurs first). We then revert to sce-
nario 1 above.

3. The falling particle can enter into contact
with three particles. As above, PF follows the
tangent sphere defined in common with P1, then,
continues along the intersection between the tan-
gent spheres P1 � PF and P2 � PF, as above,
until the particle intersects the sphere defined by
PF and P3 (the third particle with which PF
comes into contact). At this point, two things can
happen. If the center of gravity of PF lies inside
the triangle defined by the contact points (in the
x-y plane), the particle comes to rest in its final
position. Otherwise, if the center of gravity of the
particle lies outside this triangle, PF will fall
along the curve defined by the intersection of
spheres PF � P2 and PF � P3.

Of course, we are aware that this means of
calculation will not provide an exact value of �max
because the particles cannot rearrange them-
selves once they have come to rest. As shown in
Figure 9, the fact that the particles cannot move
means that a certain amount of space (especially

in the first few layers of the cube) will be under-
utilized. For instance, in this figure, if we imagine
that the four large particles have fallen and occu-
pied the space shown, the small particle must fall
outside the space defined by the larger ones even
though in theory it could be inserted in the inter-
stices indicated by the arrows. Nevertheless, if
the cube to be filled is big enough, the PSD that
gives us the highest value of �lim will in all prob-
ability be the one that corresponds to the highest
value of �max, and thus, the lowest value of � at a
given solids content.

In addition, one must also consider problems
related to the overlapping of particles with the
external boundaries of the cube. To get around
this sort of problem without writing stringent
boundary conditions, we assumed the cube was
repeated periodically in the x-y plane. For in-
stance, as shown in Figure 10, it is necessary to
sweep the shaded space in the left-hand image to
detect the presence of secondary particles with
which a falling particle would come into contact.

Simulation Results

The results of the simulations reported in this
paragraph are the average of at least 20 simula-
tions per point. The reason for this is, as men-
tioned above, there can be no single value for a
random packing factor, so it is possible that it will
vary from simulation to simulation. In addition,
we also wished to avoid anomalous predictions
due to an overabundance of situations such as
those presented in Figure 9.

Initial simulations were run to determine the
minimum value of Ndim necessary to assure that
the simulations were independent of the size of
the cube and of dp. It was found that in order for
the final result to be independent of particle size,

Figure 9 Underinitialization of space in the random
packing of spheres due to immobility of particles at rest.

Figure 10 Assumed periodicity of space used to avoid edge effects.
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Ndim must be at least 20 times larger than the
largest particle in the system. For example, if we
consider a bimodal latex with a ratio of 10 be-
tween the diameter of the large and small parti-
cles, Ndim must be at least 200 in order for this
condition to be respected.

Influence of the Width of the PSD of a
Monomodal Latex

Before considering truly bi- and trimodal latices,
we examined the influence of the width of the
PSD of a monomodal latex on �max. Because we
have imposed the condition that individual popu-
lations must be monodisperse, this is done by
performing the simulation for a trimodal latex
with very similar radii (1, 1.1, 1.2) in different
proportions. As we can see from Figure 11, the
values of �lim are lower than the value of 0.64 that
one might expect to find in this type of simulation.
However, as we mentioned above, this can be
attributed to the immobility of the particles at
rest, and therefore, the underutilization of the
space in the container. Nevertheless, these simu-

lations clearly show that as the PSD broadens,
the value of �lim increases. This result is coherent
with what we would expect to find.

Bi- and Trimodal Distributions

The results of a simulation for a purely bimodal
distribution with a particle size ratio, RL/RS � 2
(large particle radius divided by small particle
radius), are shown in Figure 12. The results of the
simulation are in good agreement with the exper-
imental data reported in the literature (see
above), with a maximum volume fraction of solids
being approached for a volume fraction of small
particles between 0.25 and 0.3 (maximum of a
second-order fit at �S � 0.3 and for a third-order
fit �S � 0.26).

Note that each point on Figure 12 is an average
value of at least 20 simulations. It is clear that this
is not enough and that a more representative graph
would be obtained with a much larger number of
simulations per point. However, a significantly
higher number of calculations was not possible in
this instance because this graph was established

Figure 11 Effect of the width of the PSD on the value of �lim for a monomodal latex.

HIGH SOLIDS CONTENT EMULSIONS. I 1893



with an early, nonoptimized version of the code and
it was necessary to reduce the time necessary for
computation. The ratio RL/RS � 2 was also chosen
to reduce the time needed for the computations. As
mentioned above, the size of the cube is governed by
the size of the largest particles: for the case RL/RS �

10, Ndim � 200, and we need to fill a cube with
dimensions of 200 � 200 � 400 (height � 2Ndim).
For RL/RS � 2, the cube need only be 40 � 40 � 80,
which means 125 times fewer calculations. The op-
timization of the code consisted of improving the
search algorithm for the number of contact points
and reducing the computation time dramatically.
The improved algorithm was used for the simula-
tions reported below.

A second series of simulations was run for a
series of trimodal latices with the following size
ratios: RL/RS � 10, RL/RM � 7.7, RM/RS � 1.3. The
results are shown in Figure 13. Direct validation
of the simulation with the experimental results in
Figure 4 is not possible given that the size ratios
of the particles is somewhat different. Generally
speaking, the results are nevertheless coherent. If
we compare Figure 4 to Figure 13, we can see that
the results of the experiments and simulations
show the same trends: a maximum solids fraction
is reached for 75–80% large particles per unit
volume. It is interesting to note that the simula-
tions predict that, for the size ratios considered
here, a bimodal mixture of large and medium
particles (75% large to 25% medium) allows us to
attain the highest value of �lim, and although the

Figure 12 �lim as a function of the volume fraction of
small particles for a bimodal latex. Ratio of the radius
of large-to-small particles fixed at 2. The curve is sim-
ply a second-order polynomial fit to the data to visual-
ize the results of the simulation and has no physical
basis.

Figure 13 �lim calculated for trimodal latices with size ratios RL/RS � 10, RL/RM

� 7.7, RM/RS � 1.3. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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trimodal mixtures are better than the bimodal
mixtures of small and large particles, they are
not as good as a bimodal mixture of large and
medium particles. Note that the ratio RL/RM
� 7.7 is very close to the optimum ratio of 7.83
found by Greenwood et al.15,21 in their studies on
viscosity.

This last result suggests that the value of �lim
calculated with the simulations proposed here are
directly correlated to the viscosity of a bi- or tri-
modal latex: the PSD that corresponds to the
highest values of �lim seems to correspond to the
lowest viscosity. This conclusion should, of course,
be applied with caution because we have only
simulated a limited number of cases and have
only a minimal experimental validation.

CONCLUSIONS

The results of this experimental and modeling
study allow us to draw a number of conclusions
concerning the relationship between the rheology
(viscosity) of multimodal latices and their PSD.

A comparison of the viscosity of blends of lati-
ces with different sizes allowed us to identify an
approximate PSD in terms of the proportions of
each population that allowed us to achieve rela-
tively low viscosities (�app at 20 s�1 � 1000 MPa
s). For ratios

dp
L

dp
S � 10 and

dp
L

dp
M � 1.8

it was found that between 10 and 15% (v/v) of
small particles, 0 to 10% of medium-sized parti-
cles, and between 75 and 80% of large particles
provided the lowest viscosities for a total solids
content of over 65%. These proportions are valid
only for the size range studied here. Simulations
of the relationship between the PSD and a limit-
ing solids content suggest that this size range
could be altered to achieve even higher concentra-
tions of polymer while retaining the same rheo-
logical characteristics.

In the case of bimodal blends, the results pre-
sented here are in agreement with those in the
literature, but little information is available else-
where to confirm the results obtained for the tri-
modal latices.

Models of latex viscosity available in the liter-
ature can be made to fit the experimental data,
but if these models are to be predictive, the value

of �max, the maximum solids content attainable
for a given PSD, must be known a priori. The
experimental and simulation studies showed that
this parameter is highly sensitive to the PSD and
is very difficult to identify without extensive ex-
perimental investigations.

The values of �lim obtained in the simulations
are lower than values of �max for randomly
packed spheres. This is not unexpected as no at-
tempt was made to reproduce the same packing
conditions as would be encountered in a real fluid
(e.g., particles will not move horizontally under-
neath other particles). Nevertheless, the simula-
tions appear to allow us to identify the propor-
tions of different particle populations in a multi-
modal latex that correspond to the highest
packing fraction possible. In situations where ex-
perimental results on similar systems are avail-
able, the values of �lim correspond closely to the
values of �max. For example, the results from
Figure 13 suggest that the simulations are valid
and that the PSD that corresponds to the highest
value of �lim also corresponds to the lowest vis-
cosity attainable for a given solids content.
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